Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define strings language and automata with examples.

(05 Marks)

- b. Define DFSM. Design DFSM to accept each of the following languages:
 - i) $L = \{w \in \{0, 1\}^* : w \text{ corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}.$
 - ii) $L = \{w \in \{a, b\}^* : (\#_a(w) + 2 \#_b(w)) \equiv_5 0\}. (\#_a(w) \text{ is the number of a's in } w).$

(12 Marks)

c. Differentiate Moore machines and Mealy machines.

(03 Marks)

OR

2 a. Define NDFSM. Convert the following NDFSM to its equivalent DFSM. Refer Fig.Q.2(a).
(12 Marks)

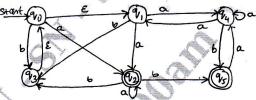


Fig.Q2(a)

b. Let M be the following DFSM. Use min DFSM to minimize M. Refer Fig.Q.2(b). (08 Marks)

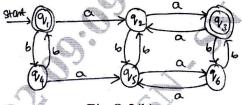


Fig.Q.2(b)

Module-2

- 3 a. Define regular expression and write regular expressions for the following languages:
 - i) $L = \{w \in \{a, b\}^* : |w| \text{ is even}\}$
 - ii) $L = \{w \in \{0, 1\}^* : w \text{ corresponds to the binary encoding, without leading 0's, of natural numbers that are powers of 4}$
 - iii) $L = \{a^n b^m c^p | n \le 4, m \ge 2, p \le 2\}$

(10 Marks)

b. Build a regular expression equivalent to DFSM given below. Refer Fig.Q.3(b). (05 Marks)

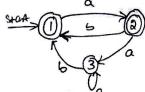


Fig.Q.3(b)

c. Build a FSM that accepts the language defined by regular expression: $(b \cup ab)^*$ (05 Marks)

1 of 2

Define regular grammar, and show a regular grammar for the language: (06 Marks) $L = \{w \in \{a, b\}^* : |w| \text{ is even }\}$ State and prove the pumping theorem for regular languages. (08 Marks) Show that the language $L = \{a^n b^n | n \ge 0\}$ is not regular. (06 Marks) Module-3 Define Context Free Grammar. Design a CFG for each of the following languages: 5 $L = \left\{ a^n b^{n+2} \middle| n \ge 0 \right\}$ $L = \left\{ a^i b^j c^k \middle| j = i + k, \forall i, j, k \ge 0 \right\}$ $L = \{a^n b^m \mid m \ge n, m - n \text{ is even } \}$ (10 Marks) b. Convert the following grammar to Chomsky normal form: $S \rightarrow aACa$ $A \rightarrow Ba$ $B \rightarrow C|c$ $C \rightarrow cC \epsilon$ (10 Marks) Define PDA. Obtain a PDA to accept the language $L = \{a^n b^m a^n | n, m \ge 0 \text{ and } m \text{ is even} \}$ (10 Marks) b. Convert the following CFG to PDA $E \rightarrow E + TT$ $T \rightarrow T * F F$ $F \rightarrow (E)$ id (06 Marks) When a PDA is called as deterministic PDA? (04 Marks) Module-4 State and prove pumping theorem for CFL. (08 Marks) Show that the following language is not context free $L = \{a^n b^n c^n | n \ge 0\}$ (06 Marks) Prove that context free languages are closed under Union and concatenation. (06 Marks) With a neat block diagram, explain the working of basic model for Turing machine. 8 (06 Marks) Design a Turing machine that accepts $L = \{0^n 1^n | n \ge 0\}$. Draw the transition diagram and show the moves for the string 0011. (10 Marks) Briefly discuss the techniques for Turing machine construction. (04 Marks) Module-5 With a neat diagram, explain the model of linear bounded automation. (08 Marks) Explain working of multitape turning machine. (06 Marks) b. Explain how a post correspondence problem can be treated as a game of dominoes. (06 Marks) OR 10 Write short notes on the following: Quantum computation and quantum computers (10 Marks) a. (05 Marks) Church – Turing Thesis b. The post-correspondence problem. (05 Marks)